If F(x) = Cos^2 (2x), Find F ' (pi/3).

FabulousJoe

From: US
Posts: 13
Votes: 52
If f(x) = cos^2 (2x), find f ' (pi/3).

 

Answer No.1

ComputerMath

From: US
Posts: 20
Votes: 60
F'(x) = 2cos(2x)(-sin(2x))*2 = -4cos(2x)sin(2x) f'(pi/3) = -4cos(2pi/3)sin(2pi/3) = -4(-1/2)(sqrt(3)/2) = sqrt(3)

Answer No.2

Anonymous

From: -
Posts: -
Votes: -
F'(x) = -2 cos(2x) sin(2x), f'(pi/3) ==> -2 cos (2pi/3) sin (2pi/3) ==> -2(1/2)(sqrt(3)/2)) ==> -2sqrt(3)/4 answer

Answer No.3

SuperSupa

From: US
Posts: 3
Votes: 9
F(x) = cos^2 (2x) = [1+ cos4x]/2 f'(x) = -2Sin(4x) f ' (pi/3) = 0.073

Your Comment/Solution

Post As: Anonymous [Change]
Enter